Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension.

نویسندگان

  • Joo Yun Jun
  • Jasenka Zubcevic
  • Yanfei Qi
  • Aqeela Afzal
  • Jessica Marulanda Carvajal
  • Jeffrey S Thinschmidt
  • Maria B Grant
  • J Mocco
  • Mohan K Raizada
چکیده

Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pivotal link between ACE2 deficiency and SARS-CoV-2 infection

Angiotensin converting enzyme-2 (ACE2) receptors mediate the entry into the cell of three strains of coronavirus: SARS-CoV, NL63 and SARS-CoV-2. ACE2 receptors are ubiquitous and widely expressed in the heart, vessels, gut, lung (particularly in type2 pneumocytes and macrophages), kidney, testisand brain. ACE2 is mostly bound to cell membranes and only scarcely present in the circulation in a s...

متن کامل

Effect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide

Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...

متن کامل

Crocin prevents acute angiotensin II-induced hypertension in anesthetized rats

Objective: Angiotensin II (Ang II), the main product of renin-angiotensin system (RAS) has a well-known role in cardiovascular regulation. Over-production of Ang II is one of the important underlying mechanisms of hypertension. In this study, the effect of crocin on cardiovascular responses in rats with acute hypertension induced by Ang II was evaluated. Materials and methods: Rats were divided...

متن کامل

Genetic and Pharmacologic Inhibition of the Chemokine Receptor CXCR2 Prevents Experimental Hypertension and Vascular Dysfunction

BACKGROUND The recruitment of leukocytes to the vascular wall is a key step in hypertension development. Chemokine receptor CXCR2 mediates inflammatory cell chemotaxis in several diseases. However, the role of CXCR2 in hypertension development and the underlying mechanisms remain unknown. METHODS Angiotensin II (490 ng·kg-1·min-1) or deoxycorticosterone acetate (DOCA) salt-induced mouse hyper...

متن کامل

اثر آنژیوتانسین II در هسته پاراونتریکولار در تشدیدآسیب ایسکمی- پرفیوژن مجدد کلیه

Background: The renal sympathetic nerve activity (RSNA) is enhanced in renal failure. Paraventricular nucleus in hypothalamus is an important central site to regulate sympathetic activity. There are angiotensin II (Ang) II receptors in this nucleus. The aim of this study was to evaluate the effects of angiotensin II in hypothalamic paraventricular nucleus (PVN) on renal ischemia-reperfusion inj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 60 5  شماره 

صفحات  -

تاریخ انتشار 2012